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Finite-element methods are used to study nonadhesive, frictionless contact between elastic solids with
self-affine surfaces. We find that the total contact area rises linearly with the load at small loads. The mean
pressure in the contact regions is independent of load and proportional to the root-mean-square slope of the
surface. The constant of proportionality is nearly independent of the Poisson ratio and roughness exponent and
lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact re-
gions have a fractal area and perimeter. The probability of finding a cluster of areaac drops asac

−t wheret
increases with a decrease in roughness exponent. The distribution of pressures shows an exponential tail that is
also found in many jammed systems. These results are contrasted to simpler models and experiments.
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I. INTRODUCTION

The forces of friction and adhesion between two surfaces
are determined by the interactions between atoms at their
interface. Most surfaces are rough enough that atoms are
only close enough to interact strongly in areas where peaks
or asperities on opposing surfaces overlap. Experiments
[1–4] and theory[5–12] show that this real area of contactA
is often much smaller than the projected areaA0 of the sur-
faces. They have also correlated[1–3] the increase in friction
with normal loadW to a corresponding increase inA.

Given the importance ofA it is not surprising that there
have been many theoretical studies of the factors that deter-
mine it in different limits. Some have examined the plastic
limit where the local pressure is large enough to flatten as-
perities[1]. The mean pressure in the contacts isW/A and in
the simplest model this has a constant value that is propor-
tional to the hardness. The resulting linear relation between
W andA is often given as an explanation for the linear rise of
friction with the load[1,13].

The behavior of elastic contacts is more complicated. In
the Hertzian limit, where friction and adhesion are ignored,
the contact area between a sphere and a flat rises only as
W2/3. However, Greenwood and Williamson’s pioneering
work [14] showed that a nearly linear relation betweenW
and A was obtained if one considered a large number of
asperities of different height. While this calculation assumed
spherical asperities with a uniform radius, a linear relation
was also obtained when it was extended by Bushet al. [15]
to include both a distribution of radii and aspherical asperi-
ties. These calculations consider explicit probability distribu-
tions for peaks and sum the Hertzian contact areas calculated
for each peak without including correlations between peaks.
Persson[8] has recently presented a different approach, mo-
tivated by the fact that many surfaces have roughness on all
length scales that can be described by self-affine scaling
[16–18]. His calculation considers the scaling of stress and
contact area with the length scale to which surface features
are resolved. Nevertheless, his final result forA only differs
from the earlier work of Bushet al. [15] by a constant factor
of p /2.

All of the above theories treat correlations between con-
tacting regions approximately. Models based on asperities
ignore spatial correlations in asperity heights[14,15]. Pers-
son’s calculation includes height correlations and becomes
exact in the limit of complete contact[9]. However, when
A,A0, correlations between local pressures and contacts are
only included in an average way. As a result, screening of
small bumps on the side of larger bumps may not be in-
cluded completely. Such correlations could changeA, and
also the distribution of pressure along the surface. The range
over whichA is proportional to the load is also difficult to
determine from analytical theories. Indeed, the work of Bush
et al. [15] seems to suggest that the linear region is confined
to infinitesimally small loads for a self-affine surface.

A recent numerical study by Borri-Brunettoet al. [19]
calculatedA and the spatial distribution of contact areas us-
ing a method that is restricted to zero Poisson ratio. They
found a substantial range whereA rose linearly with the load,
but did not test analytical results for the slope specifically. As
in Persson’s work[8], their focus was instead on the change
in results with increasing resolution of the surface roughness.
Batrouni et al. [10] have considered scaling of the contact
area with the load using a similar method. They found a
slight deviation from linearity, but ruled out larger deviations
predicted by previous scaling arguments[12].

In this paper, we present numerical calculations of contact
area and pressure distributions for a wide range of Poisson
ratios, loads, system sizes, self-affine scaling exponents and
roughness amplitudes. We first show thatA has a well-
defined thermodynamic limit, i.e., that for fixed small scale
roughness, the fraction of area in contact at a given average
normal pressure is independent of the system size. The ratio
of A over the load is shown to scale as the inverse of the
root-mean-square(rms) surface slope, with a coefficient that
lies between the results of Bushet al. [15] and Persson[8].
The dependence ofA/W on the roughness exponent and
Poisson ratio is also obtained. This allowsA to be predicted
for any elastic rough surface.

We next describe the contact morphology and distribution
of connected contact areas. The probability of finding a con-
nected region of areaac falls off as a power law,Psacd
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~ac
−t, wheret depends only on the roughness exponent. For

H,0.9, t is greater than 2, and the mean contact size is
always comparable to the resolution of the calculation. As
first noted by Greenwood and Williamson[14], the linear rise
in A with the load reflects a linear increase in the number of
contacts without any increase in their mean size or probabil-
ity distribution. Our results are contrasted to a common
model where contacts form in the regions where undeformed
surfaces would overlap. This approximation has been used to
interpret optical images of contacts[2,3], and by Greenwood
and Wu as a method of estimating the statistics of asperity
sizes[6]. We show that it gives much too large a total contact
area, and a qualitatively different distribution ofac with
t,2. Optical methods may include regions that are merely
close to touching as part of the contact. We find that this can
explain the observed discrepancy between experiment and
calculation.

The distribution of contact pressuresp is also studied. We
find that results for all system sizes, roughness amplitudes,
and roughness exponents collapse onto a universal curve
when the pressure is normalized by its mean value. The
mean value,W/A, can be obtained from the roughness am-
plitude as described above. The distribution decreases mono-
tonically with increasingp, and has an exponential tail at
largep. In contrast, approximate analytic results for the pres-
sure distribution decay as a Gaussian at largep [8]. Possible
connections to exponential stress distributions in jammed
systems[20–22] are mentioned.

In Sec. II, we describe the numerical procedures used to
generate self-affine surfaces, mesh them, and determine their
deformation using an explicit dynamic finite-element
method. In Sec. III, we present numerical results from the
contact analysis, including the contact area, contact morphol-
ogy and pressure distribution. Section IV presents conclu-
sions from the current study and discusses avenues for future
research.

II. NUMERICAL SIMULATION

A. Geometry

As in previous analytical and numerical calculations, we
use a well-known result from contact mechanics to simplify
the geometry. If there is no friction or adhesion between two
rough surfaces and the surface slope is small, then elastic
contact between them can be mapped to contact between a
single rough surface and a rigid flat plane[13]. The effective
modulusE8 that controls the contact area is given by 1/E8
=s1−n1

2d /E1+s1−n2
2d /E2 where ni and Ei are the Poisson

ratios and Young’s moduli of the two surfaces. The heighth
of the new rough surface is given by the difference between
the local heights of the original undeformed surfaces. We
consider the case where both of the surfaces have the same
self-affine scaling properties but are uncorrelated. Then the
height h has the same scaling properties, but with a larger
amplitude.

Many surfaces have roughness on all length scales that
can be described by self-affine fractal scaling. Unlike self-
similar fractals, self-affine fractal surfaces exhibit different
scaling normal to the interface than along it. We consider

geometries with periodic boundary conditions in thex−y
plane and specify the surface by the heighth along thez axis.
For a self-affine surface, variations in the height over a lat-
eral length scale, rise as,H whereH,1 is called the Hurst
or roughness exponent. SinceH,1, the surface looks
smoother at larger length scales. Many researchers also
specify the scaling by an effective fractal dimensiond−H,
whered is the spatial dimension.

To generate three-dimensional self-affine fractal surfaces
with rms roughnessD at small scales, we adopted the
successive random midpoint algorithm of Voss[18,23]. The
x-y plane is divided into a uniform square grid with unit
spacing andL nodes along each axis. At the first step, the
center of the entire grid is displaced by a height chosen at
random from a Gaussian distribution of width,HD, where
,=L /Î2 is the distance from the center to the corners. This
center point then becomes one corner of new squares that are
rotated by 45° and have a new corner to center distance,
that is smaller by a factor ofÎ2. The center of each new
square is assigned a height equal to the average of the corner
heights plus a random number chosen from a Gaussian of
width ,HD. This process is iterated down to,=1, guarantee-
ing that the variation in height scales with, in the appropri-
ate manner. Figure 1 shows a typical self-affine surface with
H=0.5. Note that the height variation is enhanced by a factor
of 10 to make it visible in Fig. 1.

It is common to test the scaling properties of self-affine
surfaces by calculating the Fourier transformCsqd,

Csqd = s2pd−2E d2r expf− iq · r gCsr d, s1d

of the height–height correlation function,

Csr d = khsr + r 8dhsr 8dl, s2d

wherekhsr 8dl=0, r and r 8 are vectors in thex-y plane, and
the angular brackets indicate an average overr 8. The func-
tion Csqd should be isotropic and decay asq−2s1+Hd. We have
generated surfaces withH between 0.3 and 0.9 and verified
that the correspondingCsqd has the correct power law scal-
ing. For a givenD, the values ofCsqd at largeq are very
insensitive to the random seed. However, there are large fluc-

FIG. 1. (Color online) Self-affine fractal surface images256
3256d generated by the successive random midpoint algorithm.
Heights are magnified by a factor of 10 to make the roughness
visible, and the color varies from dark(blue) to light (red) with
increasing height.
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tuations at smallq where the roughness is dominated by the
first few random numbers that are chosen at the largest
length scales. These first random numbers also dominate the
mean-square height variation:

Csr = 0d = kuhsr 8du2l, s3d

and we find large variations inCs0d for surfaces with the
same scale roughnessD. As discussed below, the contact area
is determined byD and is relatively insensitive to fluctua-
tions in Cs0d.

B. Mesh generation

As noted above, numerical simulations are done for a
rough elastic surface in contact with a perfectly rigid flat
surface. A typical finite-element mesh is illustrated in Fig. 2.
The mesh is discretized with 10-node tetrahedral elements.
These elements contain three integration points and quadrati-
cally interpolate the displacement field. A coarse mesh is
used for the rigid surface to improve numerical efficiency. A
fine mesh for the elastic surface is prepared in two stages.

First, a fine mesh for a flat surface is obtained using a
longest edge propagation path refinement scheme, which is
ideally suited to obtaining strong mesh gradations as well as
preserving a high mesh quality[24]. A cube of sideL=2n is
initially filled with a coarse mesh. Each tetrahedral element
at the outer surface is then divided to produce twice as many
surface nodes and the mesh is refined. This process is re-
peated until surface nodes form a uniform square grid of unit
spacing. Using this technique, meshes withL up to 512 are
created. The mesh for a 5123512 surface grid contains
about 911 000 nodes and 568 000 elements.

Next, the desired surface heightshsx,yd are imposed on
the contact surface. Moving only the surface nodes produces

badly distorted elements that would at best require impracti-
cally small time steps and at worst produce negative Jacobi-
ans. Thus all nodes are moved by a fraction of the local
height that depends on the initial heightz0 of the node above
the bottom of the elastic cube(Fig. 2). The magnitude of the
change,Dz, decreases to zero at the top of the cube so that
the top surface remains flat. The specific form for the dis-
placement isDzsx,y,z0d=hsx,ydsL−z0da wherea=6 usually
gives good meshes.

C. Finite-element simulation

The goal is to determine the equilibrium contact geometry
at a given load. An implicit approach is too memory inten-
sive for the system sizes of interest. Instead we use an ex-
plicit integration algorithm combined with a dynamic relax-
ation scheme. Three different algorithms were compared to
ensure accuracy. In the first, the top surface is given a small
velocity and its impact with the bottom surface is followed.
In the second, the displacement of the nodes at the top of the
elastic cube(Fig. 2) is incremented at a fixed rate or in small
discrete steps. In the third, a constant force is applied to each
of these nodes and gradually incremented. In the second and
third algorithms kinetic energy is removed using the method
described below. All three methods give equivalent results
for the total area. Unless otherwise noted, the results pre-
sented below were obtained with the third algorithm. We
confirmed that the mean normal stress was independent of
the height to ensure that stress had equilibrated throughout
the system.

Within the Lagrangian framework, finite-element discreti-
zation of the field equations leads to a discrete system of
equations:

Mẍ n+1 + Fn+1
int sx,ẋd = Fn+1

ext , s4d

wherex is the array of nodal coordinates,M the mass ma-
trix, Fn+1

ext the external force array, andFn+1
int the internal force

array arising from the current state of stress. The second-
order accurate central difference scheme is used to discretize
Eq. (4) in time [25,26]. A small time step was used in order
to be below the limit of stability[25].

The above equations conserve energy and will not con-
verge to the static equilibrium configuration. Optimum con-
vergence is achieved by removing a fraction of the kinetic
energy of each node at regular intervals. The characteristic
time for stress equilibration across the elastic cube is given
by the timetL for sound propagation across its heightL.
Equilibrium is reached in a fewtL by scaling all velocities
by a factor of 0.9 at intervals oftL /10. Other procedures
gave equivalent results, but with longer run times.

The internal forcesFint are calculated using a linear elastic
isotropic constitutive law. All our results are expressed in
dimensionless form by normalizing pressures by the effec-
tive modulusE8. The Poisson ration was varied from 0 to
0.45. Periodic boundary conditions are imposed at the con-
tact surfaces to eliminate boundary effects.

A contact algorithm is used only to enforce the impenetra-
bility constraint on the two surfaces. Adhesive and frictional
forces are not considered in the current work. We adopt a

FIG. 2. Geometry of a finite element mesh in an elastic body
(top) with a self-affine surface that is pushed down on a flat, rigid
substrate. Periodic boundary conditions are applied in the plane of
the interface.
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conventional master/slave approach with a predictor/
corrector split in the Newmark time-stepping algorithm[27].
The rough surface of the elastic cube is identified as slave
while the rigid surface is master. The predictor part of the
Newmark algorithm neglects the contact constraints and
therefore consists of an unconstrained step, with the result

xn+1
pred= xn + Dtvn +

Dt2

2
an, s5d

vn+1
pred= vn +

Dt

2
an. s6d

This predictor solution needs to be corrected in order to com-
ply with the impenetrability constraints. The net result of
imposing these constraints is a set of self-equilibrated con-
tact forces that modify the predictor positions and velocities.
Since the contact surfaces are presumed to be smooth, nor-
mals are well defined and the surfaces can be unambiguously
classified as master and slave. The configuration before cal-
culating internal forces is therefore,

xn+1
S = xn+1

S,pred−
Dt2

2

Nn+1
S + Fn+1

S

MS , s7d

vn+1
S = vn+1

S,pred− Dt
Nn+1

S + Fn+1
S

MS . s8d

Here Msd denotes the nodal mass, the superscriptsdS desig-
nates nodes that belong to the slave surface, and the vectors
N and F are the normal and frictional forces, respectively.
Friction will not be taken into account in the remainder of
the paper, but is discussed in Ref.[27].

Formulation of an appropriate system of forces is ob-
tained by considering a configuration in which a master sur-
face triangle(facet of a tetrahedral finite element) is pen-
etrated by several slave nodes. For each of the penetrating
slave nodes, letd be the normal depth of penetration to be
corrected by the contact forces. The contact constraints de-
termine a local problem with the normal slave force as an
unknown, which is obtained as a direct function of the pen-
etrationd and the master normal,nM,

Nn+1
S = MS 2d

Dt2
nn+1

M . s9d

D. Calculating the contact area

The contact algorithm just described identifies all slave
nodes on the top surface that attempt to penetrate the flat
bottom surface. We obtain the total contact area by multiply-
ing the number of penetrating nodesnp by the area of the
square associated with each node. In most cases we report
the fractional areaA/A0=np/L2 whereL2 is the total number
of surface nodes.

In principle, the area associated with each node varies
with the normal load if the Poisson ratio is nonzero. How-
ever, tests using a Voronoi tessellation to determine the area
for each node gave equivalent results for the relatively

smooth surfaces considered here. A Voronoi approach be-
comes important for rougher surfaces or irregular grids. A
more fundamental ambiguity in the contact area comes from
the fact that contacts(Fig. 3) contain many disjointed regions
most of which contain only a few nodes. The consequences
of this are discussed in Sec. III C.

There are also complications in defining the contact area
in experimental systems. Dieterich and Kilgore’s optical
method [2,3] identifies any region where the surfaces are
closer than some fraction of the wavelength as in contact.
Due to the fractal nature of contacts(Fig. 3) this may over-
estimate the true area. At the atomic scale, contact is difficult
to define. If one associates contact with a finite interaction,
then A/A0 would always be unity since the van der Waals
interactions between surfaces extend to arbitrary distances. A
more practical definition is to associate contact with the
separation at which the net interaction becomes strongly re-
pulsive due to the overlap of electrons on opposing surfaces.
This leads to a range of separations where surfaces are in
contact. As in the optical measurements, the contact area can
be greatly enhanced relative to the penetration definition
used here. Direct comparisons to atomistic models will be
presented in another paper[28].

III. RESULTS

A. Contact area versus external load

As noted in Sec. I, analytic theories of contact between
self-affine surfaces predict that the real area of contactA
should be proportional to the applied loadW at small loads
[7,8,14,15]. To make the load dimensionless we normalize it
by A0 times the effective modulusE8. Figure 4 shows a plot
of the fraction of the projected area that is in contactA/A0 as
a function of the normalized load for a system withL=256,
D=0.082,n=0 andH=1/2. Asexpected, the area is propor-

FIG. 3. (Color online) Regions of contact(dark) for a surface
with L=256,H=1/2,n=0 andD=0.082. The fraction of the area in
contact isA/A0=0.1.
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tional to the load at small loads. A growing deviation from
this proportionality is evident asA/A0 increases above 4 or
5%.

To emphasize deviations from linearity, the dimensionless
ratio of true contact area to loadAE8 /W is plotted against
log10A/A0 in Fig. 5. Results forL between 64 and 512 fall
onto almost identical curves. The small variation between
curves is comparable to that between different random sur-
faces of the same size. In each caseAE8 /W is nearly constant
when from 1% to 8% of the surface is in contact. This im-
plies that the mean pressure in contacting regionskpl
;W/A is also constant. The ratioAE8 /W drops asA/A0
increases further becauseA/A0 is bounded by unity while the
normalized load keeps increasing. The ratio has decreased by
a factor of two byA/A0=70%.

Most of the analytic theories mentioned above explicitly
assume that there is a statistically significant number of as-
perities in contact, and that only the tops of asperities are in
contact. The latter assumption breaks down asA/A0 ap-
proaches unity, and this contributes to the decrease at large
A/A0 in Fig. 5. The first assumption must break down for our
systems when the total number of nodes in contact,L2A/A0,
is small. This explains the rise in theL=64 data for
A/A0,2% in Fig. 5. This rise is dependent on the specific
random surface generated, and is particularly dramatic for
the case shown. Examination of this and other data indicates
that proportionality between load and area is observed when
there are more than 100 contacting nodessL2A/A0.100d.

Batrouniet al. [10] considered the same range of system
sizes for n=0. They fitted all data fromA/A0ø0.2 to a
power law and foundW~Ag with g.1. Their numerical
results clearly rule out an earlier prediction[12] that g=s1
+Hd /2, but we do not believe that their results are inconsis-
tent with an initially linear relation between load and area
sg=1d. Their fit included regions where the number of con-
tacting nodes is below the minimum threshold just described.
In addition, their value ofg decreased steadily towards unity
with increasingL, varying from 1.18 atL=32 to 1.08 atL
=256. We believe that this small difference from unity is
within the systematic errors associated with the limited scal-
ing range. Note thatg=1.1 would imply a 25% decrease in
Fig. 5 from A/A0=10−2 to 10−1, which is much larger than
the observed changes,5%d. The inset of Fig. 5 shows that
data up toA/A0=0.7 can be described by a very simple
linear decrease inA/W with an increase inA. We conclude
that g=1, but that leading quadratic corrections to scaling
give a larger apparent exponent when a large range of data is
fit.

The lack of system-size dependence in Fig. 5 may appear
surprising in the context of some previous results for self-
affine surfaces. These studies[8,19] considered a fixed
roughness at large scales and examined changes in contact
area with increasing resolution. They found that the contact
area decreased as the number of nodes increased because the
local slope of the surface became rougher at higher resolu-
tion. Our Fig. 5 compares results for the same small scale
roughness and shows that there is a well-defined thermody-
namic limit as one increases the size of the system. This
result is not obvious, since the rms roughness at the scale of
the entire contact rises asLHD. Apparently this increase in
large scale roughness is irrelevant because it rises sufficiently
slowly with L. As noted in Sec. II A, the large scale rough-
ness is sensitive to the first few random numbers chosen in
generating the self-affine surface. If surfaces with the same
large scale roughness are compared, substantial differences
are found because the small scale roughness varies. These
fluctuations are absent when results from the same small
scale roughness are compared.

The existence of a well-defined thermodynamic limit al-
lows us to consider results for a single system size in the
remainder of Sec. III, and to extrapolate the results to other
cases. In the following we will focus on the constant region
in Fig. 5 and examine variation of this constant value with
the statistical properties of the interface. Unless noted, all

FIG. 4. Fractional contact areaA/A0 (solid line) as a function of
the normalized loadW/E8A0 for L=256, D=0.082, n=0 and H
=1/2. Thedashed line is a fit to the linear behavior at small areas.

FIG. 5. (Color online) Dimensionless ratio of the area to load
AE8 /W vs log10sA/A0d for the system sizes indicated. In all cases
D=0.082,n=0 andH=1/2. Theinset shows a linear plot of the
same data.
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results are forL=256 and uncertainties due to statistical fluc-
tuations are less than 5%.

B. Comparison to analytic theories

Bush et al. [15] found that the ratio plotted in Fig. 5
should increase inversely with the root-mean-square slope of
the surfaceÎku¹hu2l. More specifically, they predicted that
the quantity,

k ; Îku¹hu2lAE8/W, s10d

should have a constant valuek=Î2p. Persson arrived at a
rather different looking expression in terms of the height–
height correlation function[Eqs.(1) and(2)] [8]. However, it
can be reduced to a prediction thatk=Î8/p using the fact
that q2Csqd is the Fourier transform ofu¹hu2. Note that both
predictions have a well-defined thermodynamic limit that is
independent of large scale roughness, just as observed in our
simulations.

For our surfaces,D is the rms change in height between
adjacent nodes in each of the two spatial directions. Thus
Îku¹hu2l=Î2D. Numerical results fork are plotted againstD
in Fig. 6 for n=0 andH=1/2. Thevalue ofk only changes
about 10%, while the roughness changes by almost an order
of magnitude. IfD is increased to larger values than consid-
ered here, the local slope of the surface exceeds unity in
some regions. This regime was not studied because it re-
quires a different meshing algorithm and most treatments of
contacts assume that the local slope remains less than unity.

We also evaluatedk over the range of roughness expo-
nents typically observed on real surfaces, 0.3øHø0.7
[17,18], and at the higher values of 0.8 and 0.9. Figure 7
shows results for a fixed value ofD=0.082. Even though the
large scale roughness,LHD, varies by more than an order of
magnitude,k changes by less than 30%. There is a nearly
linear decrease ofk with an increase ofH that may be influ-
enced by uncertainties in determining the true contact area.
As shown in Sec. III C, increasingH also increases the popu-

lation of large clusters and may reduce uncertainties associ-
ated with assuming that the entire square region around con-
tacting nodes is in contact.

Figure 8 shows that the Poisson ratio also has relatively
little effect onk. Results for each value ofH are normalized
by the valueks0d obtained atn=0. In every case there is a
nearly linear rise ink at smalln that appears to saturate asn
approaches the limiting value of 0.5. The total change of
around 10% is comparable to the change found withD. The
increase ink with n appears to be related to increased inter-
actions between nearby asperities. The lateral expansion in
response to a normal stress increases withn. This reduces the
local curvature, making it easier for adjacent regions to come
into contact. Detailed analysis of neighboring asperities
shows that a smaller peak between two contacts may be
brought up in to contact at high Poisson ratios.

All of the values ofk in Figs. 6 and 7 lie between the
analytic predictions of Bushet al. and Persson. Our results
suggest that using a value ofk=2.2 should predict the ratio
of area to load within about 10% over a wide range of sur-
face geometries atn=0. Figure 8 indicates that the value ofk

FIG. 6. Productk [Eq. (10)] as a function of roughnessD for
H=1/2 andn=0, and the constant values predicted by Bushet al.
(solid line) [15] and by Persson(dashed line) [8]. The dotted line is
a guide to the eye.

FIG. 7. Productk [Eq. (10)] as a function ofH for D=0.082,
and the constant values predicted by Bushet al. (solid line) [15] and
by Persson(dashed line) [8]. The dotted line is a guide to the eye.

FIG. 8. (Color online) Ratio of k to its value atn=0 as a func-
tion of n. Results forH between 0.3 and 0.7 show nearly the same
linear rise withn. Lines are linear fits to the data.
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should be increased linearly to about 2.5 asn increases to the
limiting value of 0.5.

The agreement with these analytic predictions is quite
good considering the ambiguities in discretization of the sur-
face. Both analytic models assume that the surface has con-
tinuous derivatives below the small length scale cutoff of the
roughness. Bushet al. [15] considered contact between ellip-
tical asperities and Persson[8] removed all Fourier content
above some wave vector. While we use quadratic shape func-
tions, the contact algorithm only considers nodal heights and
assumes that contact of a node implies contact over the entire
corresponding square. One might expect that this assumption
would lead to larger areas of contact, and our results do lie
above those of Persson’s. Discretization would not be impor-
tant if the spacing between nodes were much smaller than
the typical size of asperity contacts. However, as we now
show, the majority of the contact area consists of clusters
containing only a few nodes. The number of large clusters
grows asH→1, which may explain why our numerical re-
sults approach Persson’s prediction in this limit.

C. Distribution of connected contact regions

Most continuum theories approximate the real contact
area by summing over many disconnected asperity contacts,
each of which has a circular[14] or elliptical [15] shape. The
connected regions in our calculated contacts(in, e.g., Fig. 3)
are considerably more complicated. We consider two nodes
to be connected if they are nearest neighbors on the square
lattice of interfacial nodes[29]. All clusters of connected
contacting nodes are then identified for each load. The area
of each clusterac is just the number of connected nodes,
since each represents a square region of unit area.

Figure 9 shows the probability of finding a cluster of a
given areaPsacd as a function ofac for H=0.5,D=0.082 and
n=0. Results for different system sizes collapse onto a com-
mon curve. Forac.8 the curve can be described by a power
law Psacd,ac

−t with t=3.1 (dashed line). This rapid falloff
st.1d means that the integral ofP is dominated by small

clusters. Thus even though the maximum observed cluster
size grows withL, the value ofP at smallac is unaffected.
All of the data shown in Fig. 9 are forA/A0 between 5% and
10%, but we find that the distribution of clusters is nearly
constant forA/A0ø10%. This is the same range whereA
and the load are nearly linearly related. The probability of
large clusters rises markedly forA/A0.0.3, as clusters begin
to merge and eventually percolate across the interface. The
following data are all forA/A0ø0.1.

The model considered by Greenwood and Williamson
also gives a load independentPsacd and this is a central
reason for the linear relation between the load and area in
their model. As the load increases, each existing cluster
grows larger and new small clusters are generated in a way
that maintains a stationary distribution of cluster sizes. Only
the total number of clusters changes, and it rises linearly with
the load. Our calculatedPsacd and the total number of clus-
ters both follow this behavior. However, the distribution and
the shapes of the clusters are very different than assumed by
Greenwood and Williamson.

The variation ofPsacd with H is shown in Fig. 10. Results
for very small clusterssac,8d are nearly independent ofH,
but the asymptotic power law behavior at largeac changes
dramatically. The range of scaling behavior is too small for
precise determination oft, but our data are consistent with
t=3.1±0.2 forH=0.5. WhenH,0.5 there is an anticorrela-
tion between the surface slopes in nearby regions[18]. This
leads to more rapid upward and downward fluctuations that
make large contacts unlikely and yields a largert=4.2±0.4
for H=0.3. WhenH.0.5 there is a positive correlation be-
tween local slopes, yielding larger clusters. Fits givet
=2.3±0.2 forH=0.7 andt=1.9±0.1 forH=0.9. ForH,0.9
we findt.2, which implies that the mean cluster sizekacl is
dominated by small clusters. Directly calculated sizes are
indeed independent of bothL and A/A0. We find kacl=1.8,

FIG. 9. (Color online) Probability P of a connected cluster of
areaac as a function ofac for n=0, H=1/2, D=0.082 and the
indicated system sizes. All results follow a power law,Psacd,ac

−t,
with t=3.1 (dashed line) at largeac. The dotted line corresponds to
t=2. FIG. 10. (Color online) ProbabilityP of a connected cluster as a

function of areaac for n=0, D=0.082,L=512 and the indicated
values ofH. Dashed lines indicate asymptotic power law behavior
with t=4.2, 3.1 and 2.3 forH=0.3, 0.5 and 0.7, respectively. The
solid line corresponds tot=2.
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2.5 and 4.0 forH=0.3, 0.5 and 0.7, respectively. ForH
=0.9, t appears to be slightly smaller than 2, and the mean
cluster size grows weakly withL.

Some approximate treatments of contact begin by assum-
ing that the two surfaces do not deform and then determine
the regions where the two solids would interpenetrate[2,3,6].
Scaling arguments[18] and simulations[18,30] show that
this rigid overlap model gives a power law distribution of
connected areas at largeac with t=2−H /2. This is qualita-
tively consistent with Dieterich and Kilgore’s experiments
wheret varied from 1 to 2 and tended to decrease with an
increase ofH. However, it is qualitatively different from our
results wheret is always greater than 2. One consequence is
that the mean cluster size from the rigid overlap model di-
verges with the system size asLH, while it remains of order
the discretization size in our calculation[29].

A possible explanation for the discrepancy between our
results and experiment is that the latter identifies regions that
are within some small fraction of the wavelength of light as
being in contact. Figure 11 illustrates the dramatic effect that
this can have onPsacd. The uppermost curve shows the clus-
ter distribution obtained by applying the rigid overlap model
to our surfaces. The asymptotic slope is consistent with the
analytic prediction forH=0.5: t=2−H /2=1.75. The lower-
most curve is our result for the actual contact area. The in-
termediate curves were obtained by changing our definition
of contact to include all nodes that are separated by less than
some valuehc. As hc increases, the number of nodes in the
contact region rises and the probability of large clusters
grows. Whenhc is comparable to or larger thanD=0.082,
Psacd follows the rigid overlap prediction quite closely. It is
likely that the optical experiments were in this limit. How-
ever, it is also likely that plastic deformation is important in

these experiments. This effect will be explored in future
work.

D. Contact morphology

The contact morphologies produced by different models
are contrasted in Fig. 12. Results for two values of the inter-
penetrationd are shown, whered is the downward displace-
ment applied to the top of the elastic solid(Fig. 2) after the
surfaces first touch. The top panels show the results of the
full calculation, the middle panels are forhc=0.1, and the
bottom panels show the contacts obtained from the rigid
overlap model. The first obvious difference between the re-
sults is that the rigid overlap model grossly overestimates the
fraction of area in contact. For smalld the actual area is
roughly eight times smaller than that given by the overlap
model.

As seen above, the rigid overlap model also gives many
more large clusters. Moreover the shapes of the clusters are

FIG. 11. (Color online) ProbabilityP of a connected cluster as a
function of areaac for n=0, H=1/2,D=0.082,L=512 and different
criteria for contact. The probability distribution for the rigid overlap
model (open squares) falls off more slowly thanac

−2 (dotted line).
When only contacting nodes are includedshc=0d, P falls off more
rapidly (open circles). As hc increases, results from the full calcu-
lation approach the overlap results.

FIG. 12. (Color online) Contact morphology forL=256 for two
different values of displacementd following contact:d=1.4 and
2.54.(a), (d) Regions in true contactshc=0d; (b), (e) regions where
the surface separation is less thanhc=0.1.(c), (f) Contacts predicted
by the rigid overlap model. The fractional contact areasA/A0d is
indicated for each case.
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quite different. Analytic studies predict that the overlap
model should give clusters with a nonfractal interior, but
with a fractal interface. More specifically, ifR is the diameter
of a cluster, then the areaac~R2, but the perimeter length
sc~RDf where the fractal dimensionDf =s3−Hd /2 [18,30].
Thus as the clusters grow in size, the perimeter becomes
smaller and smaller relative to the area:sc/ac~ac

−s1+Hd/4. Fig-
ure 13 shows that our results for the overlap model are con-
sistent with this scaling prediction. However, the results for
the full calculation are quite different. The value ofsc/ac
approaches a constant at largeac, indicating that the perim-
eter and area are both fractals and have the same fractal
dimension. Plots ofsc andac as a function ofR showDf is
roughly 1.6 forH=0.5. Note thatsc is actually larger thanac
because it is defined as the number of missing nearest neigh-
bors along the periphery. Thus it would be four for a cluster
containing a single node.

Results for other values ofH look very similar to those
for H=0.5. In each casesc/ac saturates at largeac, indicating
the area and perimeter have the same fractal dimension. The
limiting value of sc/ac decreases from about 1.7 forH=0.3
to 1.1 forH=0.9. The large number of perimeter nodes leads
to some ambiguity in the total area obtained from our calcu-
lation. If only a fraction of the square around each node were
actually in contact, then the true contact area would be
smaller, moving our results in Figs. 6 and 7 closer to Pers-
son’s result[8,9]. It is interesting that our results approach
Persson’s prediction asH→1, and the perimeter becomes
less important.

Despite the above differences, the rigid overlap model
does provide information about where real contacts may oc-
cur. The distance between surfaces is always larger than that
given by the overlap model becausen=0. Thus all of the
contacts in Figs. 12(a) and 12(d) are part of the overlapping
regions shown in Figs. 12(c) and 12(f). Only a fraction of the
overlapping regions is in contact, because a local peak can
screen a neighboring valley from contact. As pointed out by
Greenwood[5], a large fraction of points are local maxima,

so the average cluster size is comparable to the lattice reso-
lution. On the other hand, a small local maximum can only
screen a small local region. Thus there tend to be many small
contacts in the regions where overlap first occurs. These
points lie in the middle of the large clusters in Figs. 12(c)
and 12(f). A higher density of clusters and clusters of larger
size are found in these regions of Figs. 12(a) and 12(d). As
noted above, when nodes that are within a distance compa-
rable toD are considered in contact, the distribution of clus-
ters approaches that for the rigid overlap model. Figures
12(b) and 12(e) show the contact morphology produced in
this limit shc=0.1d. Note that the clusters in Figs. 12(a) and
12(d) have been connected into larger clusters that still lie
within those of Figs. 12(c) and 12(f). Growth is most pro-
nounced in regions where overlap is greatest. These regions
carry a greater share of the load and flatten more.

Greenwood and Wu[6] have recently reconsidered when
a local peak should be considered an asperity. They con-
cluded that one should think of each cluster in the rigid over-
lap model as a single asperity, and use the diameter and
height of the overlap to determine the dimensions of an ef-
fective ellipsoidal asperity. Our results indicate that the origi-
nal view [5] that almost all points are asperities and that the
typical asperity diameter is comparable to the lattice size
provides a more accurate description of the contact. How-
ever, the revised approach of identifying overlapping regions
with asperities may give a better description of subsurface
stresses, because it captures correlations in the location of
load bearing regions. Since the maximum shear stress is usu-
ally below the surface, the overlap model[6] may be useful
in modeling wear.

E. Distribution of local pressures

Plastic deformation at the interface will be influenced by
how pressure is distributed within the contact area. We find

FIG. 13. (Color online) Ratio of perimetersc to areaac vs the
area for the full calculation(open squares) and rigid overlap model
(closed squares). The dashed line shows the asymptotic prediction
for the overlap model.

FIG. 14. (Color online) Probability distribution of the local pres-
sure at contacting nodes for different system sizes withD=0.082,
n=0, H=0.5 andA/A0 between 5% and 10%.
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that this distribution has a strikingly universal form. Figure
14 shows that the probabilityPspd for a contacting node to
have local pressurep is independent of the system size.
Since the contact area increases linearly with the load, the
mean local contact pressurekpl=W/A is independent of the
contact area, and the entire distribution also remains un-
changed forA/A0 between about 0.01 and 0.1.

Increasing the small scale roughnesssDd leads to a pro-
portional increase inkpl. Yet Fig. 15 shows that results for all
D andH collapse onto a universal function of the dimension-
less variablep/ kpl. The probability decreases monotonically
with increasingp, and forp/ kpl.3 follows an exponential
decay(solid line), Psp/ kpld~exps−p/p1d, with p1<kpl/1.6.
This exponential tail implies that some regions have stresses
much higher thankpl and may undergo plastic deformation
even when the mean stress is much less than the hardness.

Similar universal curves have been found for the stress
distribution in a variety of “jammed” systems[22], including
granular media[20,21], thermal glasses[31] and polymer
crazes[32]. In each case the tail of the distribution follows a
simple exponential rather than the Gaussian that might be
expected from equilibrium arguments. Several explanations
for the exponential form have been proposed[20,21,31,32],
but most do not apply to our zero temperature, deterministic
elastic system. However, it is possible that the power law
correlations in interface height may lead to a hierarchical
distribution of the load that is analogous to that in theq
model [21].

The distribution of local pressures plays a central role in
Persson’s theory of contact between self-affine surfaces
[8,9]. He defines a resolutionz corresponding to the number
of points along an axis at which the height of the surface is

known, and assumes smooth interpolation between these
points. Increasingz corresponds to resolving more of the
surface roughness and increasesD if the surface is self-
affine. The pressure distributionPsp,zd is a function of both
resolution and pressure. Its derivatives satisfy

] P

] z
= G8szdp0

2]2P

] p2 , s11d

wherep0=W/A0 is the apparent mean pressure, primes de-
note a derivative and

Gszd = sE8/p0d2ku=hu2l. s12d

Persson obtained solutions forPsp,zd in the geometry con-
sidered here by starting from perfectly flat planes with
Psp,1d=dsp−p0d and iterating to higher resolution. He also
imposed the boundary condition that the probability goes to
zero at zero pressure[9].

Given the results shown in Fig. 15, it is interesting to ask
if Persson’s equations have a universal solution in the limit
of small loads. Figure 15 shows the probability distribution
within the contact, while Persson’sPsp,zd includes noncon-
tacting regions and its integral over pressure is the fractional
contact area. Thus it should be related to the universal dis-

tribution P̃ by Psp,zd= P̃sp/ kpldp0/ kpl2, where p0/ kpl
=A/A0. Then use of Eqs.(10) and (11) leads to an equation

for P̃:

2P̃sxd + xP̃8sxd + k2P̃9sxd/4 = 0. s13d

There is a solution with unit norm and mean for Persson’s
value ofk=Î8/p:

P̃sxd =
p

2
xexpS−

p

4
x2D . s14d

As shown in Fig. 15, this solution(dotted line) is much more
strongly peaked than our numerical results, decaying to zero
linearly in the limit p→0 and as a Gaussian at largep. Note
that since the mean and norm are the same for all curves, the
presence of extra weight at largep implies more weight at
low p. Also shown in Fig. 15 is a pure Gaussian with unit
norm and mean(dashed line). This solution provides a better
fit to the numerical data at lowp. However, as for jammed
systems[20–22,31,32], the tail of the true distribution is
much closer to a pure exponential than a Gaussian decay.
This may reflect correlations in the loads carried by different
asperities that are not fully captured in analytic theories
[8,9,14,15].

IV. SUMMARY AND CONCLUSIONS

In this paper, we developed a numerical framework for
analyzing frictionless, nonadhesive contacts between self-
affine surfaces using the finite-element method. This method
was applied to perfectly elastic contacts with a range of Pois-
son ratios, roughness amplitudes and roughness exponents.
In each case the real contact areaA rises linearly with loadW
until the fraction of the total area in contact reaches 5–10%
(Fig. 5). This implies that the average local pressure in the

FIG. 15. (Color online) Probability distributions forp/ kpl at the
indicated values ofD and H all collapse onto a universal curve.
Heren=0 andA/A0 is between 5% and 10%. The solid line is a fit
to the exponential tail of the distribution, the dotted line shows Eq.
(14), and the dashed line shows a Gaussian with the appropriate
normalization and mean.
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contacts, kpl=W/A, remains constant. The dimensionless
pressurekpl /E8 is independent of the system size even
though the large scale roughness grows asLH.

As predicted by analytic studies[8,15], the dimensionless
pressure scales linearly with the small scale roughnessD.
The constant factork [Eq. (10)] that relates the roughness to
the local pressure is always between the predictions of Bush
et al. [15] and Persson[8] (Figs. 6–8). A value of k=2.2
reproduces the numerical results within about 10% forn=0,
and the best fit value rises linearly to about 2.5 asn rises to
the limiting value of 0.5. These results allow the mean pres-
sure and fractional contact area to be predicted for any elastic
self-affine surface with known small scale roughness.

The detailed morphology of the contact region and distri-
bution of areasac of connected regions were also studied. As
in early theories of contact[14,15], the increase in area with
the load reflects a linear increase in the total number of con-
tacts with no change in the probability distribution of contact
areas. AsW increases, each existing contact grows, and new
contacts are formed at a rate that maintains a constantPsacd.
At large ac, the probability distribution falls off as a power
law, Psacd~ac

−t (Fig. 10). Sincet.2 for H,0.9, the mean
cluster area is independent ofL and comparable to the reso-
lution of the calculation.

The above results for connected clusters are consistent
with the conclusion that a large fraction of nodes on a self-
affine surface are local maxima that should be treated as
asperities[5]. However, recent experimental[2,3] and theo-
retical [6] papers have suggested a different view. They ex-
amined regions where undeformed surfaces would overlap
and associated each with a contact. This model gives quali-
tatively different distributions of areas(Fig. 11). The value of
t is always less than 2, and the mean cluster area diverges as
a power of the system size. The geometry of the clusters is
also very different. The rigid overlap model gives two-
dimensional clusters with fractal perimeters, whereas the full
calculation gives fractal cluster areas with the same fractal
dimension as the perimeter(Fig. 13). Including regions
where the surfaces are separated by less thanhc as part of the
contact leads to dramatic changes in the cluster distribution
exponentt and total area. The results approach the overlap
distribution whenhc is comparable to the small scale rough-
ness. Optical experiments will detect gaps that are much
smaller than the wavelength as in contact and this may ex-
plain why small values oft are observed.

Plastic deformation will occur when the local pressure in
a contact exceeds the hardness of the material. The linear
relation between mean pressure and small scale roughness
[Eq. (10)] can be used to estimate when this will happen. The
largest experimental values ofp/E8 are of order 0.1 and are
obtained in amorphous and nanocrystalline materials. Thus
Eq. (10) implies that deformation can only be elastic
when Îku¹hu2l,0.1k,0.2. This condition is violated for
many surfaces, and the much smaller hardness of macro-
scopic crystals will lead to even tighter constraints on the
roughness. Our approach is readily extended to include plas-
tic deformation, which will be the subject of future work.

Plastic deformation may occur well before the mean pres-
sure reaches the hardness because some nodes have local
pressures much larger thankpl. Results for all parameters

collapse onto a universal probability distributionP̃sp/ kpld
(Fig. 15). Persson has presented approximate analytic equa-
tions for the pressure distribution. This analytic distribution
drops as a Gaussian at largep, while the numerical results
have an exponential tail that greatly increases the number of
sites with large pressures. Similar exponential distributions
are found in many jammed systems such as sand piles,
glasses and crazes[20–22,31,32]. A common feature of these
systems is a highly nonuniform distribution of stress. It is
possible that the presence of small bumps on bigger bumps
on still bigger bumps in our systems leads to a transmission
of stress like that in theq model for sand piles[20,21]. This
hierarchical structure may produce stress correlations that are
not included in the analytic model[8].

There are many interesting avenues for future research.
The approach outlined here can readily be extended to in-
clude more complex surface morphologies, plasticity, inter-
facial friction and tangential loading of the solids. More
challenging issues include adhesion and the role of atomic
scale roughness. These issues will require hybrid algorithms
that include atomic information about interfacial interactions.
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