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Finite-element analysis of contact between elastic self-affine surfaces
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Finite-element methods are used to study nonadhesive, frictionless contact between elastic solids with
self-affine surfaces. We find that the total contact area rises linearly with the load at small loads. The mean
pressure in the contact regions is independent of load and proportional to the root-mean-square slope of the
surface. The constant of proportionality is nearly independent of the Poisson ratio and roughness exponent and
lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact re-
gions have a fractal area and perimeter. The probability of finding a cluster ohadraps asa_” where r
increases with a decrease in roughness exponent. The distribution of pressures shows an exponential tail that is
also found in many jammed systems. These results are contrasted to simpler models and experiments.
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I. INTRODUCTION All of the above theories treat correlations between con-

The forces of friction and adhesion between two surfaceé""Cting regi_ons approximat_ely. Models b_ased on asperities
are determined by the interactions between atoms at thelf0re spatial correlations in asperity heightsl,13. Pers-
gPn’s calculation includes height correlations and becomes

only close enough to interact strongly in areas where peakeX@ct in the limit of complete conta¢®]. However, when

or asperities on opposing surfaces overlap. Experimen <A, correla‘glons between local pressures and contacts are
[1-4] and theory[5-12| show that this real area of contakt only included in an average way. As a result, screenlng_of
is often much smaller than the projected afggof the sur-  SMall bumps on the side of larger bumps may not be in-

faces. They have also correlatgd-3] the increase in friction cluded co.mp'lete_ly. Such correlations could chargeand
with normal loadW to a corresponding increase Aq also the distribution of pressure along the surface. The range

Given the importance oA it is not surorising that there °V€" whichA is proportional to the load is also difficult to
P . . P 9 determine from analytical theories. Indeed, the work of Bush
have been many theoretical studies of the factors that det

O T . &t al. [15] seems to suggest that the linear region is confined
mine it in different limits. Some have examined the plasticy, jyfinitesimally small loads for a self-affine surface.
limit where the local pressure is large enough to flatten as- A recent numerical study by Borri-Brunetiet al. [19]

perities[1]. The mean pressure in the contact$M&A and in - cgjculatedA and the spatial distribution of contact areas us-
the simplest model this has a constant value that is propokng a method that is restricted to zero Poisson ratio. They
tional to the hardness. The resulting linear relation betweefound a substantial range whekeose linearly with the load,
W andA is often given as an explanation for the linear rise ofbut did not test analytical results for the slope specifically. As
friction with the load[1,13). in Persson’s work8], their focus was instead on the change
The behavior of elastic contacts is more complicated. Irin results with increasing resolution of the surface roughness.
the Hertzian limit, where friction and adhesion are ignored,Batrouni et al. [10] have considered scaling of the contact
the contact area between a sphere and a flat rises only asea with the load using a similar method. They found a
W23, However, Greenwood and Williamson’s pioneering slight deviation from linearity, but ruled out larger deviations
work [14] showed that a nearly linear relation betweéh predicted by previous scaling argumefit].
and A was obtained if one considered a large number of In this paper, we present numerical calculations of contact
asperities of different height. While this calculation assumedarea and pressure distributions for a wide range of Poisson
spherical asperities with a uniform radius, a linear relatiorratios, loads, system sizes, self-affine scaling exponents and
was also obtained when it was extended by Beshl. [15] roughness amplitudes. We first show thathas a well-
to include both a distribution of radii and aspherical asperi-defined thermodynamic limit, i.e., that for fixed small scale
ties. These calculations consider explicit probability distribu-roughness, the fraction of area in contact at a given average
tions for peaks and sum the Hertzian contact areas calculatemrmal pressure is independent of the system size. The ratio
for each peak without including correlations between peaksof A over the load is shown to scale as the inverse of the
Perssor8] has recently presented a different approach, moroot-mean-squar@ms) surface slope, with a coefficient that
tivated by the fact that many surfaces have roughness on dles between the results of Bugh al. [15] and Perssoi8].
length scales that can be described by self-affine scalinfhe dependence of/W on the roughness exponent and
[16—-18. His calculation considers the scaling of stress andPoisson ratio is also obtained. This allo#go be predicted
contact area with the length scale to which surface featurefor any elastic rough surface.

are resolved. Nevertheless, his final resultAoonly differs We next describe the contact morphology and distribution
from the earlier work of Buslet al. [15] by a constant factor of connected contact areas. The probability of finding a con-
of 7/2. nected region of area, falls off as a power law,P(a,)
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«a.’, wherer depends only on the roughness exponent. For
H<0.9, 7 is greater than 2, and the mean contact size is
always comparable to the resolution of the calculation. As
first noted by Greenwood and Williams@t4], the linear rise
in A with the load reflects a linear increase in the number of
contacts without any increase in their mean size or probabil-
ity distribution. Our results are contrasted to a common
model where contacts form in the regions where undeformed
surfaces would overlap. This approximation has been used to
interpret optical images of contadt,3], and by Greenwood
and Wu as a method of estimating the statistics of asperity
sizes[6]. We show that it gives much too large a total contact
area, and a qualitatively different distribution af with
7<2. Optical methods may include regions that are merel
close to touching as part of the contact. We find that this carn
explain the observed discrepancy between experiment and
calculation. ) ) o - )
The distribution of contact pressurpss also studied. We ~9eometries with periodic boundary conditions in tkey
find that results for all system sizes, roughness amplitude®lane and specify the surface by the heiglalong thez axis.
and roughness exponents collapse onto a universal curfe®’ @ self-affine sgrface,Hvarlatlons in t.he height over a lat-
when the pressure is normalized by its mean value. Th&@l length scalé rise as™ whereH <1 is called the Hurst
mean valueW/A, can be obtained from the roughness am-Of roughness exponent. Sindd<1, the surface looks
plitude as described above. The distribution decreases mongMoother at larger length scales. Many researchers also
tonically with increasingp, and has an exponential tail at SPecify the scaling by an effective fractal dimensiaH,

largep. In contrast, approximate analytic results for the presvhered is the spatial dimension.

FIG. 1. (Color onling Self-affine fractal surface image56

X 256) generated by the successive random midpoint algorithm.
eights are magnified by a factor of 10 to make the roughness
isible, and the color varies from daklue) to light (red) with
creasing height.

sure distribution decay as a Gaussian at larg8]. Possible To generate three-dimensional self-affine fractal surfaces
connections to exponential stress distributions in jammedVith rms roughnessA at small scales, we adopted the
systemg20-22 are mentioned. successive random midpoint algorithm of Vd48,23. The

In Sec. Il, we describe the numerical procedures used t§~Y Plane is divided into a uniform square grid with unit
generate self-affine surfaces, mesh them, and determine thé&pacing and. nodes along each axis. At the first step, the
deformation using an explicit dynamic finite-element Center of the entire grid is displaced by a height chosen at
method. In Sec. Ill, we present numerical results from thg@ndom from a Gaussian distribution of widthA, where

contact analysis, including the contact area, contact morphof-=L/\2 is the distance from the center to the corners. This
ogy and pressure distribution. Section IV presents conclucenter point then becomes one corner of new squares that are

sions from the current study and discusses avenues for futuf@tated by 45° and have a new cormer to center distdnce
research. that is smaller by a factor of2. The center of each new

square is assigned a height equal to the average of the corner
heights plus a random number chosen from a Gaussian of
width ¢"A. This process is iterated down €& 1, guarantee-

A. Geometry ing that the variation in height scales within the appropri-

ate manner. Figure 1 shows a typical self-affine surface with

As in previous analytical and numerical calculations, we "~ . TP
use a well-known result from contact mechanics to simplifyH_O'S' Note th_at t_h_e he_lght_varlatlon is enhanced by a factor
of 10 to make it visible in Fig. 1.

the geometry. If there is no friction or adhesion between two it to test th i . f self-aff

rough surfaces and the surface slope is small, then elastic IS common o test the scaling propertiés of sefi-affine

contact between them can be mapped to contact betweensé{nc"’lces by calculating the Fourier transfoei(),

single rough surface and a rigid flat plajies]. The effective

modulusE’ that controls the contact area is given byE1l/ C(q) = (277)‘Zf d?r exg—iq - r]C(r), (1)

=(1-v2)/E;+(1-v3)/E, where v; and E; are the Poisson

ratios and Young’s moduli_of t_he two surfaqes. The height 5 the height-height correlation function,

of the new rough surface is given by the difference between

the local heights of the original undeformed surfaces. We C(r)=(h(r +r")h(r")), (2

consider the case where both of the surfaces have the same )

self-affine scaling properties but are uncorrelated. Then thwhere<h(r’))=0,r andr’ are vectors in the-y plane, and

heighth has the same scaling properties, but with a largefhe angular brackets indicate an average oveihe func-

amplitude. tion C(q) should be isotropic and decay g€, We have
Many surfaces have roughness on all length scales th@enerated surfaces with between 0.3 and 0.9 and verified

can be described by self-affine fractal scaling. Unlike selfthat the correspondinG(q) has the correct power law scal-

similar fractals, self-affine fractal surfaces exhibit differenting. For a givenA, the values ofC(q) at largeq are very

scaling normal to the interface than along it. We consideinsensitive to the random seed. However, there are large fluc-

II. NUMERICAL SIMULATION
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badly distorted elements that would at best require impracti-
cally small time steps and at worst produce negative Jacobi-
ans. Thus all nodes are moved by a fraction of the local
height that depends on the initial heigitof the node above
the bottom of the elastic culi€ig. 2). The magnitude of the
change Az, decreases to zero at the top of the cube so that
the top surface remains flat. The specific form for the dis-
placement isAz(x,y,z;) =h(x,y)(L—z,)® wherea=6 usually
gives good meshes.

C. Finite-element simulation

The goal is to determine the equilibrium contact geometry
M at a given load. An implicit approach is too memory inten-

w : \ sive for the system sizes of interest. Instead we use an ex-
SRS X AN TN plicit integration algorithm combined with a dynamic relax-
‘ ation scheme. Three different algorithms were compared to
ensure accuracy. In the first, the top surface is given a small
velocity and its impact with the bottom surface is followed.
In the second, the displacement of the nodes at the top of the

FIG. 2. Geometry of a finite element mesh in an elastic bodyelastlc cubdgFig. 2) is incremented at a fixed rate or in small

(top) with a self-affine surface that is pushed down on a flat, rigioldls:crete steps. In the third, a constant force is applied to each

substrate. Periodic boundary conditions are applied in the plane O(T:_these ”Qdes ar_1d g_radually |r_1cremented. In_ the second and
the interface. third algorithms kinetic energy is removed using the method

described below. All three methods give equivalent results

twat ; & where th h is dominated by th for the total area. Unless otherwise noted, the results pre-
uations at smaljj where the roughness is dominated by Csented below were obtained with the third algorithm. We

first few random numbers that are chosen at the Iarge‘lQ:Ionfirmed that the mean normal stress was independent of

length scales. These flrs_t r_andom numbers also dominate ﬂfﬁe height to ensure that stress had equilibrated throughout
mean-square height variation: the system

C(r=0)=(h(r")?, (3) Within the Lagrangian framework, finite-element discreti-
_ o . _ zation of the field equations leads to a discrete system of
and we find large variations i€(0) for surfaces with the equations:

same scale roughneasAs discussed below, the contact area } o ext
is determined byA and is relatively insensitive to fluctua- MX 1+ Fria(x,X) = Fily, (4)
tions in C(0).

wherex is the array of nodal coordinatel] the mass ma-
trix, F&X} the external force array, arfe, the internal force
array arising from the current state of stress. The second-
As noted above, numerical simulations are done for arder accurate central difference scheme is used to discretize
rough elastic surface in contact with a perfectly rigid flatEq. (4) in time [25,26. A small time step was used in order
surface. A typical finite-element mesh is illustrated in Fig. 2.to be below the limit of stability25].
The mesh is discretized with 10-node tetrahedral elements. The above equations conserve energy and will not con-
These elements contain three integration points and quadratrerge to the static equilibrium configuration. Optimum con-
cally interpolate the displacement field. A coarse mesh ivergence is achieved by removing a fraction of the kinetic
used for the rigid surface to improve numerical efficiency. Aenergy of each node at regular intervals. The characteristic
fine mesh for the elastic surface is prepared in two stages.time for stress equilibration across the elastic cube is given
First, a fine mesh for a flat surface is obtained using &y the time r, for sound propagation across its height
longest edge propagation path refinement scheme, which Bquilibrium is reached in a few by scaling all velocities
ideally suited to obtaining strong mesh gradations as well aby a factor of 0.9 at intervals of; /10. Other procedures
preserving a high mesh qualif24]. A cube of sideL=2"is  gave equivalent results, but with longer run times.
initially filled with a coarse mesh. Each tetrahedral element The internal force§™ are calculated using a linear elastic
at the outer surface is then divided to produce twice as manigotropic constitutive law. All our results are expressed in
surface nodes and the mesh is refined. This process is rdimensionless form by normalizing pressures by the effec-
peated until surface nodes form a uniform square grid of unitive modulusg’. The Poisson ratior was varied from 0 to
spacing. Using this technique, meshes witlip to 512 are  0.45. Periodic boundary conditions are imposed at the con-
created. The mesh for a 5512 surface grid contains tact surfaces to eliminate boundary effects.
about 911 000 nodes and 568 000 elements. A contact algorithm is used only to enforce the impenetra-
Next, the desired surface heightéx,y) are imposed on bility constraint on the two surfaces. Adhesive and frictional
the contact surface. Moving only the surface nodes produceserces are not considered in the current work. We adopt a

B. Mesh generation
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conventional master/slave approach with a predictor/ e
corrector split in the Newmark time-stepping algorithaT]. £
The rough surface of the elastic cube is identified as slave
while the rigid surface is master. The predictor part of the
Newmark algorithm neglects the contact constraints and
therefore consists of an unconstrained step, with the result

pred _ Atz
Xn+1 =Xn + AtVn + 2 an, (5)
At
Vﬁ:eld: Vot @ (6)

2

This predictor solution needs to be corrected in order to com-
ply with the impenetrability constraints. The net result of
imposing these constraints is a set of self-equilibrated con-
tact forces that modify the predictor positions and velocities.
Since the contact surfaces are presumed to be smooth, nor-
mals are well defined and the surfaces can be unambiguously
classified as master and slave. The configuration before cal-
culating internal forces is therefore, FIG. 3. (Color onling Regions of contactdark) for a surface
with L=256,H=1/2,»=0 andA=0.082. The fraction of the area in

S S .
s _ Spred_A_tan+l+Fn+1 7 contact isA/Ay=0.1.
Xnt1= X1 2 MS ! ( )
smooth surfaces considered here. A Voronoi approach be-
S Spred_ 5 NS+ Foy comes important for rougher surfaces or irregular grids. A
Vhi1=Vpir — At MS 8 more fundamental ambiguity in the contact area comes from

the fact that contactg-ig. 3) contain many disjointed regions
Here M denotes the nodal mass, the supersaipdesig-  most of which contain only a few nodes. The consequences
nates nodes that belong to the slave surface, and the vectaybthis are discussed in Sec. Il C.
N and F are the normal and frictional forces, respectively. There are also complications in defining the contact area
Friction will not be taken into account in the remainder of in experimental systems. Dieterich and Kilgore's optical
the paper, but is discussed in RE27]. method [2,3] identifies any region where the surfaces are
Formulation of an appropriate system of forces is ob-closer than some fraction of the wavelength as in contact.
tained by considering a configuration in which a master surbue to the fractal nature of contadiSig. 3) this may over-
face triangle(facet of a tetrahedral finite elemeérs pen- estimate the true area. At the atomic scale, contact is difficult
etrated by several slave nodes. For each of the penetrating define. If one associates contact with a finite interaction,
slave nodes, leb be the normal depth of penetration to be then A/A, would always be unity since the van der Waals
corrected by the contact forces. The contact constraints déateractions between surfaces extend to arbitrary distances. A
termine a local problem with the normal slave force as ammore practical definition is to associate contact with the
unknown, which is obtained as a direct function of the penseparation at which the net interaction becomes strongly re-
etration s and the master normatM, pulsive due to the overlap of electrons on opposing surfaces.
This leads to a range of separations where surfaces are in
Nﬁﬂ - Msz_aznml_ (9) contact. As in the optical mgasurements, the co_ntact area can
At be greatly enhanced relative to the penetration definition
used here. Direct comparisons to atomistic models will be

presented in another papg8].
D. Calculating the contact area

The contact algorithm just described identifies all slave . RESULTS
nodes on the top surface that attempt to penetrate the flat
bottom surface. We obtain the total contact area by multiply-
ing the number of penetrating nodas by the area of the As noted in Sec. |, analytic theories of contact between
square associated with each node. In most cases we repaklf-affine surfaces predict that the real area of confact
the fractional area@\\/Ao:np/L2 wherel? is the total number should be proportional to the applied losdat small loads
of surface nodes. [7,8,14,15. To make the load dimensionless we normalize it

In principle, the area associated with each node varieby Ay times the effective modulug’. Figure 4 shows a plot
with the normal load if the Poisson ratio is nonzero. How-of the fraction of the projected area that is in contatg, as
ever, tests using a Voronoi tessellation to determine the area function of the normalized load for a system wiith 256,
for each node gave equivalent results for the relativelyA=0.082,»=0 andH=1/2. Asexpected, the area is propor-

A. Contact area versus external load
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0.2 Most of the analytic theories mentioned above explicitly
0.18 assume that there is a statistically significant number of as-
0.16 perities in contact, and that only the tops of asperities are in

contact. The latter assumption breaks downAd#\, ap-
0.14 proaches unity, and this contributes to the decrease at large
= 0.12 A/Aqin Fig. 5. The first assumption must break down for our
< o1 systems when the total number of nodes in conta/A,,
< 0.08 is small. This explains the rise in the=64 data for
AlA;<2% in Fig. 5. This rise is dependent on the specific
0.06 random surface generated, and is particularly dramatic for
0.04 the case shown. Examination of this and other data indicates
0.02 that proportionality between load and area is observed when
okl oy oy there are more than 100 contacting nodes\/ Ay > 100).
6 0002 0004 0006 0008 001 Batrouniet al. [10] considered the same range of system

W/E'Ay sizes for v=0. They fitted all data fromA/A;<0.2 to a
power law and foundN«A? with y>1. Their numerical
FIG. 4. Fractional contact are® A, (solid line) as a function of  results clearly rule out an earlier predictiph?] that y=(1
the normalized load\V/E'A, for L=256,A=0.082,»=0 andH 4 14)/2 but we do not believe that their results are inconsis-
=1/2. Thedashed line is a fit to the linear behavior at small areéasont with an initially linear relation between load and area

tional to the load at small loads. A growing deviation from (y=1). Their fit included regions where the number of con-

this proportionality is evident a8/A, increases above 4 or tacting_ nodes i$ below the minimum threshpld just descriped.
50, In addition, their value ofy decreased steadily towards unity

To emphasize deviations from linearity, the dimensionlesdVith incréasingL, varying from 1.18 aL. =32 to 1.08 al

ratio of true contact area to loatlE' /W is plotted against =256. We believe that this small difference from unity is

P ithin the systematic errors associated with the limited scal-
log;oA/A, in Fig. 5. Results folL between 64 and 512 fall V! A _ .
onto almost identical curves. The small variation betweer"d 'ange. Note thay=1.1 would imply a 25% decrease in

. A 1 C
curves is comparable to that between different random suﬁ:g' 5bfrom 'S/Aﬁ_lcr tg 10 h W.h'Ch 'Sf mpch IaLger thsn
faces of the same size. In each cA&/W s nearly constant (1€ observed chande-5%). The inset of Fig. 5 shows that

when from 1% to 8% of the surface is in contact. This im-dat@ up t0A/A,=0.7 can be described by a very simple
plies that the mean pressure in contacting regidps linear decrease id/W with an increase irA. We conclude

=WI/A is also constant. The rati6E'/W drops asA/Aq that y=1, but that leading quadratic corrections to scaling

increases further becauséA, is bounded by unity while the give a larger apparent exponent when a large range of data is
normalized load keeps increasing. The ratio has decreased B%/
a factor of two byA/Ay=70%.

23

The lack of system-size dependence in Fig. 5 may appear
surprising in the context of some previous results for self-
affine surfaces. These studi¢8,19 considered a fixed
roughness at large scales and examined changes in contact
area with increasing resolution. They found that the contact
area decreased as the number of nodes increased because the
local slope of the surface became rougher at higher resolu-
tion. Our Fig. 5 compares results for the same small scale
roughness and shows that there is a well-defined thermody-
namic limit as one increases the size of the system. This
result is not obvious, since the rms roughness at the scale of
the entire contact rises as'A. Apparently this increase in
large scale roughness is irrelevant because it rises sufficiently
slowly with L. As noted in Sec. Il A, the large scale rough-
ness is sensitive to the first few random numbers chosen in
generating the self-affine surface. If surfaces with the same
large scale roughness are compared, substantial differences

5| L L -~ 10 : are found because the small scale roughness varies. These
> _ 1 — 0 fluctuations are absent when results from the same small
10 10 10 scale roughness are compared.
A/AO The existence of a well-defined thermodynamic limit al-

lows us to consider results for a single system size in the

FIG. 5. (Color online Dimensionless ratio of the area to load remainder of Sec. Ill, and to extrapolate the results to other
AE' /W vs logo(A/Ay) for the system sizes indicated. In all cases cases. In the following we will focus on the constant region
A=0.082,»=0 andH=1/2. Theinset shows a linear plot of the in Fig. 5 and examine variation of this constant value with
same data. the statistical properties of the interface. Unless noted, all
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FIG. 6. Productx [Eq. (10)] as a function of roughness for
H=1/2 andv=0, and the constant values predicted by Baslal.
(solid line) [15] and by Persso(dashed ling[8]. The dotted line is
a guide to the eye.

FIG. 7. Productx [Eg. (10)] as a function ofH for A=0.082,
and the constant values predicted by Beshl. (solid line) [15] and
by Perssor{dashed ling[8]. The dotted line is a guide to the eye.

lation of large clusters and may reduce uncertainties associ-
results are fob. =256 and uncertainties due to statistical fluc- ated with assuming that the entire square region around con-
tuations are less than 5%. tacting nodes is in contact.
Figure 8 shows that the Poisson ratio also has relatively
little effect onk. Results for each value ¢f are normalized
by the valuex(0) obtained atv=0. In every case there is a
Bush et al. [15] found that the ratio plotted in Fig. 5 nearly linear rise i at smallv that appears to saturate as
should increase inversely with the root-mean-square slope @fpproaches the limiting value of 0.5. The total change of
the surfacey(|Vh[?). More specifically, they predicted that around 10% is comparable to the change found WitfThe
the quantity, increase ink with v appears to be related to increased inter-
T— actions between nearby asperities. The lateral expansion in
k= (IVhBAE'IW, (10 response to a normal st)r/essri)ncreases wiffhis reducpes the

should have a constant Va|ue:\% Persson arrived at a local CUrVatUre, making it easier for adjacent regionS to come
rather different looking expression in terms of the height-into contact. Detailed analysis of neighboring asperities

height correlation functiofiEgs.(1) and(2)] [8]. However, it ~ Shows that a smaller peak between two contacts may be

P o)~ 11 brought up in to contact at high Poisson ratios.
can be reduced to a prediction thet 8/ using the fact
P A g All of the values ofk in Figs. 6 and 7 lie between the

thatg°C(q) is the Fourier transform dVh|?. Note that both i it ¢ Buckt al and P o "
predictions have a well-defined thermodynamic limit that jsanaly 'Ct ?r:et Ictions o IUS ,&az. ;nh el(;ssond_ tlfdr] reSL,:. S
independent of large scale roughness, just as observed in Oﬁ?gges at using a vajue gk 2.2 should predict the ratio

of area to load within about 10% over a wide range of sur-

simulations. . ; S
For our surfacesA is the rms change in height between face geometries at=0. Figure 8 indicates that the value iof

adjacent ngdes in each of the two spatial directions. Thus
\V(|Vh[2y=v2A. Numerical results fok are plotted againsk
in Fig. 6 for v=0 andH=1/2. Thevalue of x only changes
about 10%, while the roughness changes by almost an order
of magnitude. IfA is increased to larger values than consid-
ered here, the local slope of the surface exceeds unity in
some regions. This regime was not studied because it re-
quires a different meshing algorithm and most treatments of
contacts assume that the local slope remains less than unity.
We also evaluated over the range of roughness expo-
nents typically observed on real surfaces, 9B3<0.7 I v
[17,18, and at the higher values of 0.8 and 0.9. Figure 7 |

B. Comparison to analytic theories

.15 1

._‘
i
(==}
T
.\

K(v)/x(0)

,_A
=
W

—

Y
«
1

shows results for a fixed value af=0.082. Even though the
large scale roughnesk!A, varies by more than an order of

0.1

0.2
v

0.3

0.4

0.5

magnitude,x changes by less than 30%. There is a nearly
linear decrease of with an increase ofl that may be influ- FIG. 8. (Color online Ratio of  to its value atv=0 as a func-

enced by uncertainties in determining the true contact areaion of ». Results forH between 0.3 and 0.7 show nearly the same
As shown in Sec. Il C, increasing also increases the popu- linear rise withv. Lines are linear fits to the data.
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FIG. 9. (Color onling Probability P of a connected cluster of 10-7 (1 v iaandl T \r\ .
areaa; as a function ofa, for »=0, H=1/2, A=0.082 and the 109 10! 102 103

indicated system sizes. All results follow a power l&¢a.) ~a;",
with 7=3.1(dashed lingat largea.. The dotted line corresponds to
T=2.

A

FIG. 10. (Color onling Probability P of a connected cluster as a
function of areaa, for »=0, A=0.082,L=512 and the indicated
should be increased linearly to about 2.5va8creases to the values ofH. Dashed lines indicate asymptotic power law behavior
limiting value of 0.5. with 7=4.2, 3.1 and 2.3 foH=0.3, 0.5 and 0.7, respectively. The

The agreement with these analytic predictions is quitesolid line corresponds to=2.
good considering the ambiguities in discretization of the sur- .
face. Both analytic models assume that the surface has coflusters. Thus even though the maximum observed cluster
tinuous derivatives below the small length scale cutoff of theSiZ€ grows withL, the value ofP at smalla. is unaffected.
roughness. Busht al.[15] considered contact between ellip- Al of the data shown in Fig. 9 are fdk/ Ay between 5% and
tical asperities and Perss§8] removed all Fourier content 10%, but we find that the distribution of clusters is nearly
above some wave vector. While we use quadratic shape fun€onstant forA/Ag=<10%. This is the same range wheke
tions, the contact algorithm only considers nodal heights an@d the load are nearly linearly related. The probability of
assumes that contact of a node implies contact over the entife'9e clusters rises markedly 6/ Ag>0.3, as clusters begin
corresponding square. One might expect that this assumptidR Merge and eventually percolate across the interface. The
would lead to larger areas of contact, and our results do li€o!lowing data are all forA/Ag=0.1. .
above those of Persson’s. Discretization would not be impor- The model considered by Greenwood and Williamson
tant if the spacing between nodes were much smaller thaf!SC gives a load independeR(a) and this is a central
the typical size of asperity contacts. However, as we noweason for the linear relation between the load and area in
show, the majority of the contact area consists of clusteré1€ir model. As the load increases, each existing cluster
containing only a few nodes. The number of large cluster§rows larger and new small clusters are generated in a way
grows asH — 1, which may explain why our numerical re- that maintains a stationary distribution of cluster sizes. Only
sults approach Persson’s prediction in this limit. the total number of clusters changes, and it rises linearly with
the load. Our calculateB(a;) and the total number of clus-
ters both follow this behavior. However, the distribution and
the shapes of the clusters are very different than assumed by

Most continuum theories approximate the real contacGreenwood and Williamson.
area by summing over many disconnected asperity contacts, The variation ofP(a.) with H is shown in Fig. 10. Results
each of which has a circul&t4] or elliptical [15] shape. The for very small clusterga,<8) are nearly independent &f,
connected regions in our calculated contgBise.g., Fig. 3  but the asymptotic power law behavior at largechanges
are considerably more complicated. We consider two nodegramatically. The range of scaling behavior is too small for
to be connected if they are nearest neighbors on the squapgecise determination of, but our data are consistent with
lattice of interfacial node$29]. All clusters of connected 7=3.1+0.2 forH=0.5. WhenH < 0.5 there is an anticorrela-
contacting nodes are then identified for each load. The areon between the surface slopes in nearby regid@. This
of each cluster, is just the number of connected nodes, leads to more rapid upward and downward fluctuations that
since each represents a square region of unit area. make large contacts unlikely and yields a larger4.2+0.4

Figure 9 shows the probability of finding a cluster of afor H=0.3. WhenH > 0.5 there is a positive correlation be-
given areeP(a,) as a function ok, for H=0.5,A=0.082 and  tween local slopes, yielding larger clusters. Fits give
v=0. Results for different system sizes collapse onto a com=2.3+0.2 forH=0.7 andr=1.9£0.1 forH=0.9. ForH<0.9
mon curve. Foa.> 8 the curve can be described by a powerwe find 7> 2, which implies that the mean cluster sizg) is
law P(a;) ~a;" with 7=3.1 (dashed ling This rapid falloff ~ dominated by small clusters. Directly calculated sizes are
(7>1) means that the integral d? is dominated by small indeed independent of both and A/A,. We find{(a;)=1.8,

C. Distribution of connected contact regions
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FIG. 11. (Color onling ProbabilityP of a connected cluster as a
function of areaa, for v=0,H=1/2,A=0.082,L=512 and different
criteria for contact. The probability distribution for the rigid overlap
model (open squaresfalls off more slowly tharra;2 (dotted ling.
When only contacting nodes are includggd=0), P falls off more
rapidly (open circleg As h. increases, results from the full calcu-
lation approach the overlap results.

=
<
2.5 and 4.0 forH=0.3, 0.5 and 0.7, respectively. Fét E
=0.9, 7 appears to be slightly smaller than 2, and the mean >
cluster size grows weakly with. ©
Some approximate treatments of contact begin by assum
ing that the two surfaces do not deform and then determine
the regions where the two solids would interpenetfa;a,q.
Scaling argument$18] and simulationg18,30 show that
this rigid overlap model gives a power law distribution of
connected areas at largg with 7=2-H/2. This is qualita-

tively consistent with Dieterich and Kilgore's experiments 2.54.(a), (d) Regions in true contach,=0); (b), (€) regions where

Wherer varied from 1 t(.) 2 and 'Fen_ded to_ decrease with anthe surface separation is less thar0.1.(c), (f) Contacts predicted
increase oH. However, it is qualitatively different from our by the rigid overlap model. The fractional contact at@dAq) is

results wherer is always.greater than 2 .One CONSequenCe is i ~iod for each case.

that the mean cluster size from the rigid overlap model di-

verges with the system size &S, while it remains of order _ ) ) _

the discretization size in our calculati¢®g]. these experiments. This effect will be explored in future
A possible explanation for the discrepancy between outVork:

results and experiment is that the latter identifies regions that

are within some small fraction of the wavelength of light as

being in contact. Figure 11 illustrates the dramatic effect that The contact morphologies produced by different models

this can have ofP(a.). The uppermost curve shows the clus- are contrasted in Fig. 12. Results for two values of the inter-

ter distribution obtained by applying the rigid overlap modelpenetratiord are shown, wherd is the downward displace-

to our surfaces. The asymptotic slope is consistent with thenent applied to the top of the elastic soligig. 2) after the

analytic prediction foH=0.5: 7=2-H/2=1.75. The lower- surfaces first touch. The top panels show the results of the

most curve is our result for the actual contact area. The infull calculation, the middle panels are fty,=0.1, and the

termediate curves were obtained by changing our definitiomottom panels show the contacts obtained from the rigid

of contact to include all nodes that are separated by less thasverlap model. The first obvious difference between the re-

some valueh.. As h, increases, the number of nodes in thesults is that the rigid overlap model grossly overestimates the

contact region rises and the probability of large clusterdraction of area in contact. For small the actual area is

grows. Whenh, is comparable to or larger thah=0.082, roughly eight times smaller than that given by the overlap

P(a.) follows the rigid overlap prediction quite closely. It is model.

likely that the optical experiments were in this limit. How-  As seen above, the rigid overlap model also gives many

ever, it is also likely that plastic deformation is important in more large clusters. Moreover the shapes of the clusters are

,"‘ -8 i .
o ERON
1§ ‘“’i 5

() A/Ag=0.46

() A/Ag=0.25

FIG. 12. (Color onling Contact morphology fot. =256 for two
different values of displacement following contact:d=1.4 and

D. Contact morphology
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FIG. 13. (Color onling Ratio of perimeters. to areaa; vs the 0 0.05 0.1 0.15 02 025 03
area for the full calculatioiopen squargsand rigid overlap model /E'
(closed squargsThe dashed line shows the asymptotic prediction p

for the overlap model.
P FIG. 14.(Color onling Probability distribution of the local pres-

. . . . . sure at contacting nodes for different system sizes wit0.082,
quite different. Analytic studies predict that the overlap ,_ g5 andA/A, between 5% and 10%.

model should give clusters with a nonfractal interior, but

with a fractal interface. More specifically, R is the diameter . )

of a cluster, then the arem.<R?, but the perimeter length so the average cluster size is comparable to the lattice reso-
oo RO whe're e frocral dimer;siOf:(3‘H)/2 [18,30. lution. On the other hand, a small local maximum can only
Thus as the clusters grow in size, the perimeter becomei €N a$ma" local region. Thus there ten_d 1o be many small
smaller and smaller relative to the a,regl'acoca"(“H)” Fig- contacts in the regions where overlap first occurs. These
ure 13 shows that our results for the overlap model are corf—)omtS lie in the middle of the large clusters in Figs(d2

sistent with this scaling prediction. However, the results forand 12f). A higher density of clusters and clusters of larger

. ; . size are found in these regions of Figs(d)2and 12d). As
;he :ggcﬁilscﬂagg):stzlﬁ gtu :;e dlfi-fr?drﬁ:rgfinTh?ha\:tamz leilr?n noted above, when nodes that are within a distance compa-
P e 9 P ra}ble toA are considered in contact, the distribution of clus-
eter and area are both fractals and have the same frac Al < aporoaches that for the rigid overlap model. Fiqures
dimension. Plots of; anda. as a function oR showD; is bp 9 b - 9

roughly 1.6 forH=0.5. Note thas; is actually larger tha@a, 12(b) and 12e) show the contact morphology produced in

because it is defined as the number of missing nearest neig his limit (h;=0.1). Note that the clusters in Figs. (& and

; . 2(d) have been connected into larger clusters that still lie
Sgrﬁa?*?r?g ;hgir?geigpnhoeg)eﬁ Thus it would be four for a cluste within those of Figs. 1@) and 12f). Growth is most pro-

Results for other values df look very similar to those nounced in regions where overlap is greatest. These regions

for H=0.5. In each casg./a; saturates at larga,., indicating carry a greater share of the load and flatten more.

the area and perimeter have the same fractal dimension. T%e Ig’égfnvggsdsﬁgglgvﬁg nggi(;g?:gtgnre;;n;r'i?er?r%:/hign_
limiting value of s,/a, decreases from about 1.7 fbr=0.3 P perty. y

t0 1.1 forH=0.9. The large number of perimeter nodes lead cluded that one should think of each cluster in the rigid over-

to some ambiguity in the total area obtained from our calcujaéoi rr:logfelhaesosefl:gl'ﬁ) 32?;:%;};?&u;;égii:r'gn;?t:; ‘Z?_d
lation. If only a fraction of the square around each node wer 9 S p 1o L -
ective ellipsoidal asperity. Our results indicate that the origi-

actually in contact, then the true contact area would bnaI view [5] that almost all points are asperities and that the
smaller, moving our results in Figs. 6 and 7 closer to Pers: [5] P P

son’s result8,d]. It is interesting that our results approach typical asperity diameter is comparable to the lattice size

Persson's prediction a1 and the perimeter becomes provides a more accurate description of the contact. How-
less importgnt ’ P ever, the revised approach of identifying overlapping regions

Despite the above differences, the rigid overlap mode}Nith asperities may give a better desgriptio_n of subsu_rface
' stresses, because it captures correlations in the location of

does provide information about where real contacts may % ad bearing regions. Since the maximum shear stress is usu-
cur. The distance between surfaces is always larger than th greg '
ally below the surface, the overlap modé] may be useful

given by the overlap model because0. Thus all of the . :

contacts in Figs. (@) and 12d) are part of the overlapping in modeling wear.
regions shown in Figs. 12) and 12f). Only a fraction of the
overlapping regions is in contact, because a local peak can
screen a neighboring valley from contact. As pointed out by Plastic deformation at the interface will be influenced by
Greenwood5], a large fraction of points are local maxima, how pressure is distributed within the contact area. We find

E. Distribution of local pressures
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known, and assumes smooth interpolation between these

100 YU AL points. Increasing, corresponds to resolving more of the
9'9@%‘ ] surface roughness and increasksif the surface is self-
N 4. i affine. The pressure distributid®(p, {) is a function of both
10-1 _ &%‘s&g\ i resolution and pressure. Its derivatives satisfy
o . $t ]
~ ",y | P o™
N ] o =G 0P (11)
X 1072 a E where p,=WI/ A, is the apparent mean pressure, primes de-
& i : note a derivative and
L H= = S 1
~ sl TH03, A0041 ; G(0) = (E'lpo) (V). 12
- vH=0.5, A=0.082 \ 1 Persson obtained solutions fBxp, ) in the geometry con-
- » H=0.3, A=0.082 * N 1 sidered here by starting from perfectly flat planes with
- < H=0.7, A=0.082 \ . P(p,1)=8(p—py) and iterating to higher resolution. He also
1074 AR EE .. TR imposed the boundary condition that the probability goes to
0 1 2 3 4 5 6 zero at zero pressuié].
p/<p> Given the results shown in Fig. 15, it is interesting to ask

if Persson’s equations have a universal solution in the limit
FIG. 15. (Color online Probability distributions fop/{p) at the Of_ f]f“a'r'] loads. FlgurfﬂlS shows the prqballblllty distribution
indicated values ofA and H all collapse onto a universal curve. wit _'n the (_:OntaCt’ W '_e Persson’y(p, ¢) inc Ud_es noncon.-
Here v=0 andA/A, is between 5% and 10%. The solid line is a fit tacting regions and its integral over pressure is the fractional
to the exponential tail of the distribution, the dotted line shows Eq.contact area. Thus it should be related to the universal dis-
(14, ar_1d t_he dashed line shows a Gaussian with the appropriatgibution P by P(p,{)=P(p/{p))po/{p)%, Where po/{p)
normalization and mean. =A/A,. Then use of Eqq10) and(11) leads to an equation

that this distribution has a strikingly universal form. Figure for P:
14 shows that the probabiliti?(p) for a contacting node to ~ ~ = B
have local pressurg is independent of the system size. 2P(x) +xP'(x) + k“P"(x)/4 = 0. 13
Since the contact area increases linearly with the load, th¢nhere is a solution with unit norm and mean for Persson’s
mean local contact pressufg)=W/A is independent of the yajue of k=877
contact area, and the entire distribution also remains un-
changed forA/ Ay between about 0.01 and 0.1. S - T T

Inc?reasing 'E?;Oe small scale roughn€dg leads to a pro- PO = 2 xexp(— 4 X > (14
portional increase iKp). Yet Fig. 15 shows that results for all

A andH collapse onto a universal function of the dimension- . .
. > . strongly peaked than our numerical results, decaying to zero
less variablgp/{p). The probability decreases monotonically ;. . . ;
linearly in the limitp— 0 and as a Gaussian at langeNote

with incre_asi_ngp, and forp/{p)>3 fOHOWS_ an exponential that since the mean and norm are the same for all curves, the
decay(solid line), P(p/(p)) exp(-p/py), with p;=(p)/1.6.  hresence of extra weight at largeimplies more weight at
This exponential tail implies that some regions have stressqgy p. Also shown in Fig. 15 is a pure Gaussian with unit
much higher thar{p) and may undergo plastic deformation norm and meandashed ling This solution provides a better
even when the mean stress is much less than the hardnessit to the numerical data at low. However, as for jammed
Similar universal curves have been found for the stresgystems[20-22,31,3p the tail of the true distribution is
distribution in a variety of “jammed” systeni&2], including  much closer to a pure exponential than a Gaussian decay.
granular medig[20,2], thermal glasse$31] and polymer This may reflect correlations in the loads carried by different
crazeg32]. In each case the tail of the distribution follows a asperities that are not fully captured in analytic theories
simple exponential rather than the Gaussian that might bgg 9,14,15.
expected from equilibrium arguments. Several explanations
for the exponential form have been propo$éﬂ,21,31,3]_a . IV. SUMMARY AND CONCLUSIONS
but most do not apply to our zero temperature, deterministic
elastic system. However, it is possible that the power law In this paper, we developed a numerical framework for
correlations in interface height may lead to a hierarchicaknalyzing frictionless, nonadhesive contacts between self-
distribution of the load that is analogous to that in tfpe affine surfaces using the finite-element method. This method
model [21]. was applied to perfectly elastic contacts with a range of Pois-
The distribution of local pressures plays a central role inson ratios, roughness amplitudes and roughness exponents.
Persson's theory of contact between self-affine surfacek each case the real contact afesses linearly with loadV
[8,9]. He defines a resolutioficorresponding to the number until the fraction of the total area in contact reaches 5-10%
of points along an axis at which the height of the surface igFig. 5. This implies that the average local pressure in the

As shown in Fig. 15, this solutiogdotted ling is much more
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contacts,{p)=W/A, remains constant. The dimensionless Plastic deformation will occur when the local pressure in
pressure(p)/E’ is independent of the system size evena contact exceeds the hardness of the material. The linear
though the large scale roughness grows as relation between mean pressure and small scale roughness
As predicted by analytic studi¢8,15), the dimensionless [EQ.(10)] can be used to estimate when this will happen. The
pressure scales linearly with the small scale roughiess largest experimental values pfE’ are of order 0.1 and are
The constant factok [Eq. (10)] that relates the roughness to obtained in amorphous and nanocrystalline materials. Thus
the local pressure is always between the predictions of BusAq. (10) implies that deformation can only be elastic
et al. [15] and Perssor8] (Figs. 6-8. A value of k=2.2  when (|Vh[?)<0.1x~0.2. This condition is violated for
reproduces the numerical results within about 10%#60,  many surfaces, and the much smaller hardness of macro-
and the best fit value rises linearly to about 2.5aes 0 goopic crystals will lead to even tighter constraints on the

the limiting value of 0.5. These results allow the mean pres;, uhness. Our approach is readily extended to include plas-
sure and fractional contact area to be predicted for any elastﬁ:C deformation, which will be the subject of future work
self-affine surface with known small scale roughness. Plastic deformation may occur well before the mean pres-

The detailed morphology of the contact region and diStri'sure reaches the hardness because some nodes have local
bution of areas,. of connected regions were also studied. As
pressures much larger thdp). Results for all parameters

in early theories of conta¢ti4,15, the increase in area with <
the load reflects a linear increase in the total number of coneollapse onto a universal probability distributid¥(p/{p))
tacts with no change in the probability distribution of contact(Fig. 15). Persson has presented approximate analytic equa-
areas. ASW increases, each existing contact grows, and newions for the pressure distribution. This analytic distribution
contacts are formed at a rate that maintains a con®@gl.  drops as a Gaussian at largewhile the numerical results
At large a,, the probability distribution falls off as a power have an exponential tail that greatly increases the number of
law, P(a) <a;” (Fig. 10. Sincer>2 for H<0.9, the mean sjtes with large pressures. Similar exponential distributions
cIu_ster area is independent bfand comparable to the reso- are found in many jammed systems such as sand piles,
lution of the calculation. ~ glasses and craz¢20—22,31,3R A common feature of these
_The above results for connected clusters are consisteQ{stems is a highly nonuniform distribution of stress. It is
wnh the conclusion that a Iarge fraction of nodes on a Se”‘possible that the presence of small bumps on bigger bumps
affine surface are local maxima that should be treated &gy, il higger bumps in our systems leads to a transmission
asperitieg5]. However, recent experimentf,3] and theo- 4t giress like that in the model for sand pile§20,21. This

retical [6] papers have suggested a different view. They expjierarchical structure may produce stress correlations that are
amined regions where undeformed surfaces would overlapat included in the analytic mod¢8].

and associated each with a contact. This model gives quali- There are many interesting avenues for future research.
taf[ively different distributions of aredfig. 11). The vall_Je of  The approach outlined here can readily be extended to in-
7is always less than 2, a_nd the mean cluster area dlverges.@@de more complex surface morphologies, plasticity, inter-
a power of the system size. The geometry of the clusters igyqja| friction and tangential loading of the solids. More

also very different. The rigid overlap model gives two- cpajlenging issues include adhesion and the role of atomic
dimensional clusters with fractal perimeters, whereas the full.5 e roughness. These issues will require hybrid algorithms

calculation gives fractal cluster areas with the same fractgh ¢ include atomic information about interfacial interactions.
dimension as the perimetdiFig. 13. Including regions

where the surfaces are separated by lessthas part of the

contact leads to dramatic changes in the cluster distribution ACKNOWLEDGMENTS
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